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ABSTRACT 

J" Let R be a ring and J its radical. Define Jt  = A J", Jz = A b ' " '  "'" 

ark = N J;_ i "'" "It is shown that in a ring R satisfying a polynomial identity 

and the ascending chain condition ort ideals, Jk ---- 0 for some appropriate k. 

Unlike the situation in a commutative Noetherian ring, the intersection of the 

powers of the radical in a noncommutative Noetherian ring may very well be 

different from (0). In fact, in the first example given of this [4], the ring is a right 

Noetherian ring satisfying a polynomial identity, that is, a right Noetherian 

P.I. ring. In that example, however, this intersection at least turned out to be 

nilpotent. As was later shown [5], if one drops the assumption that the ring be 

P.I. one can get examples in which this intersection, and higher intersections 

constructed successively from it, can be rather bizarre. 

As we show below in Theorem 1, in the presence of a P.I., and assuming only 

ascending chain conditions on (two-sided) ideals, although we cannot say that 

the intersection of  the powers of the radical must be 0, we do have some control 

on its nature. Before going into this in detail, we would like to make a remark 

or two about the proof  of Theorem 1. 

The argument makes use of two powerful results proved recently. The first of 

these, due to M. Artin [2], characterizes Azumaya algebras of rank n 2 over their 

centers via polynomial identities. The second, due to E. Formanek 13], asserts 
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that in the n x n matrix ring over a field there are polynomials in noncommuting 

variables which take on nonconstant values in the center. 

I f  R is a ring, let J be the Jacobson radical of R. We define: 

oo co oo 

J1= N J~,J2 = ~ J~,'", Jk = Q J:-l" 

Let us recall also that by the standard identity of degree m we mean the polynomial 

Sm(xt,..', x m ) =  ~ , . ( - 1 ) ~ x ~ ( l ) " . x ~ ( m )  in the noncommuting variables 

x l , " - ,  xm, where a runs over Z~, the symmetric group of degree m, and ( -  1) ~ is 

the signature of a. 

We now prove 

THEOZEM 1. Let R be a semi-prime rin# satisfying the standard identity 

of degree 2n. If  R satisfies the ascending chain condition on ideals then Jn = O. 

Before starting the proof we introduce a few notions which we shall need. If  R 

is a prime ring satisfying a polynomial identity, by the degree of R we shall mean 

the degree of the standard identity of lowest degree satisfied by R. If  R is a semi- 

prime P.I. ring, by its degree we mean the maximum of the degrees of R/P,  where 

P is a prime ideal of R. 

As was pointed out by several people independently (see [7] for instance), it 

follows from Posner's theorem and Formanek's result that if R is a prime P.I. 

ring then its center Z is not (0) and there exist polynomials in noncommuting 

variables which when evaluated on R give values only in Z, and these values are 

not a constant. Call a polynomialf(xl ,  ..., xn) a central polynomial if f(0,0, .-., 0) 

= 0, f is not a P.I. for R, but f ( r l ,  ..., rn) ~ Z for all r l , . . . ,  1", ~ R. Let F(R) be the 

set of values taken on by all the central polynomials. F(R) is a subring of R; it is 

called the Formanek center of R. 

One simple remark, which is needed in the proof, should be made: if R is a 

prime ring and P is a prime ideal of R such that P ~ F(R) then R /P  has lower 

degree than R. 

PROOF OF THE TnFOREM. We claim that in order to prove the theorem it is 

enough to prove it in case the ring R is prime. For if R is semi-prime, then 0 = ~ P 

where P runs over the prime ideals of R. Since R/P is prime and satisfies 

$2,(xi, "",x2~), if J denotes the image of J in R/P, then ]~ = 0, hence J ,  c P. 

From this and N P = 0 we would have that J ,  = 0. 

So we consider the case that R is a prime ring. We proceed by induction on the 

degree of R. 
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If  there exists an element 0t e F(R), the Formanek center, such that a $ J then, 

since R/J is semi-prime and a + J is central in R/J, o: + J is not nilpotent, and 

hence 0d~ J for any integer i. The localization, R[0~-:], of R at a is an Azumaya 

algebra [6], and JR[o: -~] # R[~-~]. Since R[a - t ]  is an Azumaya algebra, there 

is a one-to-one correspondence between the ideals and those of its center Z; 

moreover, if U is an ideal of R[~-I ] ,  then U = ( U n Z ) R [ a - 1 ] .  Since Z is a 

commutative Noetherian domain, if Jo =(JR[o~-~]) nZ ,  then nJ'~=O. 

Because JR[o: -1] -- JoR[0~-l], and from the correspondence of the ideals of  

R[~ -~] with those of Z, we get that n (JRIo~-~]) '' = 0, and so n jm = 0. That 

is, in this case, J1 = 0. 

Therefore we may assume that F(R) c J. Since F(R) c Z, the argument given 

in the commutative case yields that n (F(R)R)" = 0. Let K in R be the inverse 

image of g ,  the maximal nil ideal of R/F(R)R. Since R/F(R)R is P.I. and satisfies 

the ascending chain condition on ideals, R is nilpotent; say R s c  F(R)R; in 

particular, K c J. 

Since R is the intersection of all the prime ideals of R/F(R)R, K is the in- 

tersection, K = n P, where P runs over all the prime ideals of R which contain 

F(R)R. Thus, all central polynomials of R vanish on R/P for each prime ideal P 

of R which contains F(R). Hence R/P must be of lower degree than R; thus R/P 

must satisfy S2(n_l)(Xl,"',X2(n_l) ). By the induction we have that J,_~ c P 

for each such P. But then J ,_ 1 c n P -- K. Since K s c F(R)R and n (F(R)R) m = O, 

we get that n J~_ ~ = 0, and so J ,  = 0 as desired. 

Theorem 1 immediately implies 

THEOI~a~M 2. Let R be a ring satisfying the ascending chain condition on 

ideals. I f  R satisfies the standard identity of degree 2n then J , + l =  0 (in fact, 
J, is nilpotent). 

PROOF. If  N is the maximal nil ideal of R, then N is nilpotent. Moreover, since 

R/N satisfies the hypothesis of Theorem 1, J ,  c N follows, and thus the theorem 

is true. 

The next and final theorem is in the same spirit as Theorem 2. Its proof is 

completely elementary and formal; as a corollary to it we obtain a special ease of 

Theorem 2. 

But first a 

DEFINITION. A ring is (left) bounded if in every prime homomorphic image, 

left ideals generated by a regular element contain a nonzero two-sided ideal. 
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THEOREM 3. Let  R be a right Noether ian  ring which is left bounded;  then 

Jt = 0 for  some integer t. 

PROOF. Assume that Js # 0 for all s. Let I be an ideal of  R maximal with 

respect to the property of containing no J r  We claim that I is a prime ideal of  R. 

For  if A B c  I where A and B are ideals of R which properly contain I, then by 

the choice of I, Ju C A and Jv ~ B for some u and v. Thus J~ ~ A and J~ ~ B where 

s = max(u,v);  hence, j2  ~ A B  ~ I. But then J s + l =  [-)jm is in I, contrary to the 

choice of I. Therefore I is a prime ideal of  R. 

Hence, to prove the theorem, we may assume that R is a prime ring in which 

Jt ~ 0 for all t, but Js, for appropriate s, is contained in every nonzero ideal 

of  R. 

Now, as an ideal in a prime right Noetherian ring, J must contain a regular 

element a. By assumption, Ra D T, T # 0 a nonzero ideal of R. From its form, 

T = Ia, where I is a left ideal of R. Now T 2 = I a l a  and I a I  c T ~ Ra,  hence 

T 2 ~ Ra 2. Continuing in this manner we get that T n c Ra  n for every n. Thus 

N T n c  N R a  n . If  c # 0  is in N T u then c = r l a  = r2 a2 . . . . .  rn an . . . .  . 

Because a is regular we have rnR c rn+ tR; now the ascending chain of right ideals 

r t R  c r2R c ... c r ,R c ... terminates at some point, that is, fuR = rn+tR. So 

ru+l = rub for some b e R  but r~ = rn+la, which gives that rn+~= r,b = r~+lab. 

Since a b ~ J  this last relation forces ru+ t = 0, and so c = r~+~a n+~ = 0, a con- 

tradiction. Thus N Ra ~ = 0, and so [7 T ~ = 0. Since T # 0 is an ideal of R, J~ c T, 

but then J,+ ~ = N J~ c N T ~ = 0. With this contradiction the theorem is proved. 

Theorem 3 has an interesting corollary. 

COROLLARY. I f  R is a r ight  Noether ian  P.I.  ring then Jt -- O f o r  some t. 

PROOF. By a result of  Amitsur [1], a P.I. ring is left bounded. Apply the 

theorem. 
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